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Abstract. We describe some of Newton’s most profound geometrical discoveries, arguing that by thinking

of him as a geometer we gain a deep insight into his peculiar genius. We pay particular attention to

Newton’s work on the organic construction, which deserves to be better known, being a classical geometrical
construction of the Cremona transformation (1862). Newton was aware of its importance in geometry, using

it to generate algebraic curves, including those with singularities.

1. Introduction

Isaac Newton was a geometer. Although he is much more widely known for the calculus, the inverse
square law of gravitation, and the optics, geometry lay at the heart of his scientific thought. Geometry
allowed Newton the creative freedom to make many of his astounding discoveries, as well as giving him the
mathematical exactness and certainty that other methods simply could not.

In trying to understand what geometry meant to Newton we will also discuss his own geometrical discov-
eries, and the way in which he presented them. These were far ahead of their time. For example, it is well
known that his classification of cubic curves anticipated projective geometry, and thanks to Arnol’d (1990)
it is also now widely appreciated that his lemma on the areas of oval figures was an extraordinary leap two
hundred years into Newton’s future.

Less well known is his extraordinary work on the organic construction, which allowed him to perform
what are now referred to as Cremona transformations to resolve singularities of plane algebraic curves.

Geometry was not a branch of mathematics, it was a way of doing mathematics, and Newton defended
it fiercely, especially against Cartesian methods. We will ask why Newton was so sceptical of what most
mathematicians regarded as a powerful new development. This will lead us to consider Newton’s methods
of curve construction, his affinity with the ancient mathematicians, and his wish to uncover the mysterious
analysis supposedly underlying their work.

These were all hot topics in early modern geometry. Great controversy surrounded the questions of which
problems were to be regarded as geometric and which methods might be allowable in their solution. The
publication of Descartes’ Géométrie (1637) was largely responsible for the introduction of algebraic methods
and criteria, in spite of Descartes’ own wishes. This threw into sharp relief the demarcation disputes which
arose, originally, from the ancient focus on allowable rules of construction, and we discuss Newton’s challenge
to Cartesian methods1.

It is important to note that Descartes’ Géométrie was to some extent responsible for Newton’s own early
interest in mathematics, and geometry in particular2. It was not until the 1680s that he focussed his attention
on ancient geometrical methods and became dismissive of Cartesian geometry.

This will not be a review of the excellent book (Guicciardini, 2009), but we will refer to it more than to
any other. We find in this book compelling arguments for a complete re-appraisal of the core of Newton’s
work.

We would like to thank June Barrow-Green, Luca Chiantini, and Jeremy Gray for their help and encour-
agement.

1According to David Gregory, Newton referred to people using Cartesian methods as the “bunglers of mathematics”! See
page 42 of (Hiscock, 1937).

2Newton studied van Schooten’s second Latin edition of Géométrie.
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2. Analysis and synthesis

As Guicciardini3 argues, the certainty Newton sought was “guaranteed by geometry”, and Newton “be-
lieved that only geometry could provide a certain and therefore publishable demonstration”. But how,
precisely, was geometry to be defined? In order to obtain this certainty, it was necessary to know and
understand precisely what it was that was to be demonstrated. This had been a difficult question for the
early modern predecessors of Newton. What did it really mean to have knowledge of a geometrical entity?
Was it simply enough to postulate it, or to be able to deduce its existence from postulates, or should it be
physically constructed, even when this is merely a representation of the object?

If it should be physically constructed, then by what means? For example, Kepler (1619) took the view4

that only the strict Euclidean tools should be used. He therefore regarded the heptagon as “unknowable”,
although he was happy to discuss properties that it would have were it to exist. On the other hand, Viète
(1593) believed that the ancient neusis construction should be adopted as an additional postulate, and
showed that one could thereby solve problems involving third and fourth degree equations5.

Figure 1. Neusis: given a line with the segment AB marked on it, to be able to rotate this
line about O and slide it through O until A lies on the fixed line and B lies on the fixed
circle.

We defer until later a discussion of Newton’s preferred construction methods. [Given that neusis was used
in ancient times, it is striking that Euclid chose arguably the most restrictive set of axioms. We are attracted
by the hypothesis in (Fowler, 1999) that these were chosen because the anthyphairetic sequences which are
eventually periodic are precisely those which come from ratios with ruler and compass constructions. In
other words those ratios for which the Euclidean algorithm gives a finite description have ruler and compass
constructions. However, this is a digression here, as there is no evidence that Newton was aware of this
property of Euclidean constructions.]

The early modern mathematicians followed the ancients in dividing problem solving into two stages. The
first stage, analysis, is the path to the discovery of a solution. Bos6 explores in great depth the various types
of analysis that may have been performed. The main distinction we shall make here is between algebraic and
geometric analyses. We shall see that in the mid 1670s Newton became skeptical of the algebraic methods,
and the idea of an algebraic analysis no less so.

The second stage, synthesis, is a demonstration of the construction or solution. This was a crucial require-
ment before a geometrical problem could be considered solved. Indeed, following the ancient geometers, early
modern mathematicians usually removed all traces of the underlying analysis, leaving only the geometrical
construction.

3See page 13 of (Guicciardini, 2009).
4See section 11.3 of (Bos, 2001).
5See pages 167–168 of (Bos, 2001).
6See chapter 5 of (Bos, 2001).
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Of course, in many cases this geometrical construction was simply the reverse of the analysis, and Descartes
tried to maintain this link between analysis and synthesis even when the analysis, in his case, was entirely
algebraic. Newton argued, however, that this link was broken:

Through algebra you easily arrive at equations, but always to pass therefrom to the elegant
constructions and demonstrations which usually result by means of the method of porisms
is not so easy, nor is one’s ingenuity and power of invention so greatly exercised and refined
in this analysis7.

There are two points being made here. One is that the constructions arising from Cartesian analysis
were anything but elegant, and that one should instead use the method of porisms, about which we will say
more in a moment. The other is that the Cartesian procedures are algorithmic, and allow no room for the
imagination.

In spite of the methods in Descartes’ Géométrie having become widely accepted, Newton believed that
there not only could but should be a geometrical analysis. Early in his studies he mastered the new alge-
braic methods, and only later turned his attention to classical geometry, reading the works of Euclid and
Apollonius, and Commandino’s Latin translation of the Collectio (1588) by the fourth century commentator
Pappus. According to his friend Henry Pemberton (1694–1771), editor of the third edition of Principia
Mathematica, Newton had a high regard for the classical geometers8:

Of their taste, and form of demonstration Sir Isaac always professed himself a great admirer:
I have heard him even censure himself for not following them yet more closely than he
did; and speak with regret for his mistake at the beginning of his mathematical studies,
in applying himself to the works of Des Cartes and other algebraic writers, before he had
considered the elements of Euclide with that attention, which so excellent a writer deserves.

It was from Pappus’ work that Newton learned of what he believed to be the ancient method of analysis:
the porisms. Guicciardini explores the possibility that Newton may have been trying to somehow recreate
Euclid’s work on porisms in order to identify ancient geometrical analysis9. Agreement on precisely what
the classical geometers meant by a porism is still elusive, but as the early modern geometers understood it,
the porisms required the construction of a locus satisfying set conditions, such as the ancient problem that
came to be known as Pappus’ Problem.

3. Pappus’ Problem

The contrast between Newton and Descartes is perhaps nowhere more evident than in their approaches
to the Pappus problem. This was thought to have been introduced by Euclid, and studied by Apollonius,
but it is often attributed to Pappus because the general problem, extending to any number of given lines,
appeared in his Collection (in the fourth century). The classic case, however, is the four-line locus10:

Given four lines and four corresponding angles, find the locus of a point such that the angled
distances di from the point to each line maintain the constant ratio d1d2 : d3d4.

Descartes dedicated much time to the problem, reconstructing early solutions in the case with five lines11.
In his extensive study of the problem in the Géométrie, Descartes introduces a coordinate system along two
of the lines, and points on the locus are described by coordinates in that system. He was able to reduce the
four-line problem to a single quadratic equation in two variables. Bos argues12 that the study of Pappus’
problem convinced Descartes more than anything else of the power of algebraic methods.

7This dates from the 1690s. See page 102 of (Guicciardini, 2009), and page 261 of volume 7 of (Newton, 1967–1981).
8See page 378 of (Westfall, 1980).
9See page 82 of (Guicciardini, 2009).
10The three-line problem occurs when two of these four given lines are coincident. In the general case of many lines, the

angled distances must maintain the constant ratio d1 . . . dk : dk+1 . . . d2k for 2k lines, or d1 . . . dk+1 : αdk+2 . . . d2k+1 for 2k+ 1

lines.
11The general solution to this is the Cartesian parabola. See sections 19.2 and 19.3 in (Bos, 2001).
12See chapters 19 and 23 of (Bos, 2001).
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Figure 2. The four-line locus problem

Indeed, Descartes claimed that every algebraic curve13 is the solution of a Pappus problem of n lines,
which Newton shows to be false. Newton considered the case n = 12. He noted14 that 6th degree curves
have 27 parameters, whilst the corresponding Pappus problem would involve 11 or 12 lines. But the 12 line
problem requires that

d1d2d3d4d5d6 = kd7d8d9d10d11d12,

which has 22 parameters in determining the position of 11 lines with respect to the 12th, and the factor k,
making 23 parameters. So, there must exist algebraic curves that are not solutions of Pappus problems.

He then develops a completely synthetic solution, in his manuscript Solutio problematis veterum de loco
solido15, a version of the first section of which was later included in the first edition of the Principia16 (1687),
Book 1 Section V, as Lemmas 17–22.

Guicciardini (2009) describes how Newton’s solution is in two steps. Firstly, from Propositions 16–23 of
Book 3 of the Conics of Apollonius17, he shows that (in the words of Lemma 17)

If four straight lines PQ,PR, PS, PT are drawn at given angles from any point P of a given
conic to the four infinitely produced sides AB,CD,AC,DB of some quadrilateral ABCD
inscribed in the conic, one line being drawn to each side, the rectangle PQ · PR of the lines
drawn to two opposite sides will be in a given ratio to the rectangle PS · PT of the lines
drawn to the other two opposite sides.18

The converse is Lemma 18: if the ratio is constant then P will be on a conic. Then Lemma 19 shows how
to construct the point P on the curve.

Newton’s second step is to show how the locus which solves the problem—a conic through five given
points—can be constructed. Commenting that this was essentially given by Pappus, Newton then introduces
the startling organic construction. We will discuss this in much more detail later, but the essence is this.
Newton chose two fixed points B and C called poles, and around each pole he allowed to rotate a pair of
rulers, each pair at a fixed angle (the two angles not having to be equal). In each pair he designated one
ruler the directing “leg” and the other the describing “leg”.

There is a third special point: when the directing legs are chosen to coincide then the point of intersection
of the describing legs is denoted A.

13He thought of these as the geometrical curves.
14This dates from the late 1670s. See page 343 in volume 4 of (Newton, 1967–1981).
15See page 282 in volume 4 of (Newton, 1967–1981).
16See (Newton, 1687). Newton needed these results in this part of the Principia in order to find orbits of comets, but in

the 1690s he considered removing them from the second edition and publishing them separately. Sections IV and V are also
discussed in (Milne, 1927).

17Approximate dates for Apollonius are (260–190).
18Whiteside (1961) observes that this is equivalent to Desargues’ Conic Involution Theorem, and also notes that the condition

amounts to the constancy of a cross-ratio.
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Figure 3. Lemma 17

In general, of course, the directing legs do not coincide, and as their point M of intersection moves, it
determines the movement of the point D of intersection of the describing legs. Newton showed that if M
is constrained to move along a straight line then D describes a conic through A, B, and C, and conversely
that any such conic arises in this way.

Figure 4. The organic construction

This beautiful result appears in the Principia as Lemma 21 of Book 1 Section V:
If two movable and infinite straight lines BM and CM , drawn through given points B and
C as poles, describe by their meeting-point M a third straight line MN given in position,
and if two other infinite straight lines BD and CD are drawn, making given angles MBD
and MCD with the first two lines at those given points B and C; then I say that the point
D, where these two lines BD and CD meet, will describe a conic passing through points B
and C. And conversely, if the point D, where the straight lines BD and CD meet, describes
a conic passing through the given points B,C,A, and the angle DBM is always equal to the
given angle ABC, and the angle DCM is always equal to the given angle ACB; then point
M will lie in a straight line given in position.

Newton’s proofs of both the result and its converse are elegant and clear19. They follow from the anhar-
monic property of conics (his Lemma 20) and the fact that two conics do not intersect in more than four
points (his Lemma 20, Corollary 3). Guicciardini (2009) argues that this sequence of ideas came from an

19The point A is crucial to the construction, and it may be helpful to the reader to note that in his thesis (1961) Whiteside
did not appear to grasp its importance and drew the conclusion that the proof of the converse was flawed. He corrected this

misunderstanding on page 298 of volume 4 of (Newton, 1967–1981).
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extension of the “main porism” of Pappus to the case of conics, and Newton had indeed been determined to
restore this ancient method.

Newton’s description of conics was in a fairly strong sense what we would now refer to as the projective
description. In Proposition 22 he shows how to construct the conic through five given points. In fact he gives
two constructions. Whiteside and others interpret the first as evidence that Newton had at least an intuitive
if not explicit grasp of Steiner’s Theorem20. The second uses the organic construction, but this should not
be taken as indicating any reserve about this construction on Newton’s part, as he also published it in the
Enumeratio (1704) and the Arithmetica Universalis (1707).

However, in the Principia Newton’s solution of the classical Pappus problem appears as a corollary to
Lemma 19, after which he cannot resist the following comments:

And thus there is exhibited in this corollary not an [analytical] computation but a geometrical
synthesis, such as the ancients required, of the classical problem of four lines, which was
begun by Euclid and carried on by Apollonius.

4. Rules for construction

Among geometers it is in a way considered to be a considerable sin when somebody finds a
plane problem by conics or line-like curves and when, to put it briefly, the solution of the
problem is of an inappropriate kind21.

The influence of this remark by Pappus was very great in the early modern period. Bos22 gives three
examples, from Descartes, Fermat, and Jacob Bernoulli, in which this passage on sin was explicitly quoted.
Mathematicians wishing to extend geometrical knowledge struggled to formulate precise definitions of the
subject itself, and of the simplicity of the various types (“plane”, “solid”, and “linear”) of geometrical
constructions.

It was accepted that straight lines and circles formed a basis for classical geometry, and that the way to
construct them in practise was by straight edge and compasses. In addition it was also well known that the
ancients had studied other curves, such as conic sections, conchoids, the Archimedian spiral, and Hippias’
quadratrix, and other means of construction, such as neusis. However, these wider ideas were somehow less
well defined than the strict Euclidean ones, and hence the focus on demarcation.

Indeed, some of these constructions were dismissed as being “mechanical”, but for Descartes this did not
make sense: circles and straight lines were also mechanical, in fact, and yet they were perfectly acceptable.
He introduced his own “new compasses”23 for solving the trisection problem, and wrote that the precision
with which a curve could be understood should be the criterion in geometry, not the precision with which it
could be traced by hand or by instruments24.

From our point of view, Descartes’ extension of the geometrical boundaries to include all algebraic curves
was a dramatic and important one. Bos (2001) argues that although Descartes’ attempts to define the
constructions which would generate all algebraic curves were neither explicit nor conclusive, they were
nevertheless the deepest part of the Géométrie. We describe them very briefly, and then consider Newton’s
fierce criticisms of them.

Descartes started by claiming that

20Steiner’s Theorem (1833) states that if p and p′ are pencils of lines through vertices A and B respectively, and if there
is a correspondence between the lines of p and p′ having the property that the cross-ratio of any four lines in p is equal to

the cross-ratio of the corresponding four lines in p′, then the locus of the point of intersection of corresponding lines is a conic

through A and B.
21Here, “finds” means “solves”, and the strong language—sin—comes from the Latin translation of Pappus’ Collection

published by Commandino in 1588. See page 49 of (Bos, 2001).
22See note 31 on page 50 of (Bos, 2001).
23In Descartes’ Cogitationes Privatae (1619–1620) he sketched three such instruments, one for angle trisection, and two

others for solving particular cubic equations. The first was an assembly of four hinged rulers OA,OB,OC,OD, extending from

a single point O. These rulers were connected by a further four rulers of fixed length, also hinged, such that the three inner

angles, AOB,BOC,COD, would always be equal. These instruments certainly fulfilled Descartes’ criteria for curve tracing (see
below). See also section 16.4 of (Bos, 2001).

24See page 338 of (Bos, 2001).
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nothing else need be supposed than that two or several lines can be moved one by the other
and that their intersections mark other lines

and in the interpretation by Bos these curves satisfied the four criteria
(1) the moving objects were themselves straight or curved lines,
(2) the tracing point was defined as the intersection of two such moving lines,
(3) the motions of the lines were continuous, and
(4) that they were strictly coordinated by one initial motion.

For example, Descartes objected to the quadratrix on the grounds that it required both circular and
linear motions25, which could not be strictly coordinated by one motion, because this would amount to a
rectification of the circumference of a circle, which he believed “would never be known to man”26.

This is also why Descartes rejected methods of construction in which a string is sometimes straight and
sometimes curved, such as the device generating a spiral described by Huygens27. In contrast, he accepted
pointwise constructions, but was careful to distinguish those in which generic points on the curve could be
constructed, from those in which only a special subset of points on the curve could be reached. He argued
that curves with these generic pointwise constructions could also be obtained by a continuous motion, so
that their intersections with other similar curves could be regarded as constructible.

Having shown how to reduce the analysis of a geometrical problem to algebra, and having decided that
algebraic curves were precisely those acceptable in geometry, Descartes still had to demonstrate how to
perform the synthesis.

Descartes was faced with the task of providing the standard constructions that were to be used once the
algebra had been performed. He divided problems into classes according to the degree of their equation.
In each case a standard form of the equation was given, and this was to be accompanied by a standard
construction. For the plane problems Descartes simply referred to the standard ruler and compass construc-
tions, while for problems involving third and fourth degree equations he gave his own constructions using
the parabola and circle. He then claimed that analogous constructions in the higher degree cases “are not
difficult to find”, thus dismissing the subject.

Pappus’ remark depends upon having a clear criterion for the simplicity of a construction. Here Descartes
adopted an unequivocally algebraic view: simplicity was defined by the degree of the equation. Guicciardini
argues that Newton was in a weak position when he criticized this criterion, because Newton’s arguments
were based on aesthetic judgements, while Descartes’ criterion was at least precise, whether right or wrong.

It is ironic that Newton’s organic construction satisfied Descartes’ criteria for allowable constructions,
given that Newton so explicitly distanced himself from Descartes on construction methods. Newton was
scornful of pointwise constructions, because one has to complete the curve by “a chance of the hand”, and
he also rejected, in an argument reminiscent of Kepler’s28, the “solid” constructions involving intersections
of planes and cones. The underlying difference, though, was that (in modern terminology) to Descartes
only algebraic curves were geometrical, the others being “mechanical”, while to Newton all curves were
mechanical:

But these descriptions, insofar as they are achieved by manufactured instruments, are me-
chanical; insofar, however, as they are understood to be accomplished by the geometrical
lines which the rulers in the instruments represent, they are exactly those which we embrace
. . . as geometrical29.

Of course, before one reaches the stage of construction, one has to perform an analysis of the problem, and
here the distinction between Newton and Descartes is even clearer. For Newton, the link between analysis
and construction was extremely important:

25Bos shrewdly observes that “it is not necessary to pre-install a special ratio of velocities to draw a quadratrix. The ratio
... arises only because the square in which the quadratrix is to be drawn is supposed as given”. See note 15 on pages 42–43 of

(Bos, 2001).
26See page 342 of (Bos, 2001).
27This is from a manuscript of 1650, and Bos suggests that Huygens may have learned about this device from Descartes.

See page 347 of (Bos, 2001)
28See page 188 of (Bos, 2001).
29See page 104 of (Guicciardini, 2009).
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Whence it comes that a resolution which proceeds by means of appropriate porisms is more
suited to composing demonstrations than is common algebra30.

But it was not merely a question of adopting a method which would lead to clear and elegant constructions.
Newton also felt that mechanical (that is, geometrical) constructions had another crucial feature:

[I]n definitions [of curves] it is allowable to posit the reason for a mechanical genesis, in that
the species of magnitude is best understood from the reason for its genesis31.

We note that Newton is not alone in regarding geometry as yielding deeper insights. A striking modern
example comes from (Chandrasekhar, 1995). In the “Prologue” to his book Chandrasekhar says:

The manner of my study of the Principia was to read the enunciations of the different
propositions, construct proofs for them independently ab initio, and then carefully follow
Newton’s own demonstrations.

In his review (1995) of this book, Penrose describes Chandrasekhar’s discovery that
In almost all cases, he found to his astonishment that Newton’s “archaic” methods were not
only shorter and more elegant [than those using the standard procedures of modern analysis]
but more revealing of the deeper issues.

5. The Organic construction

Exercitationum mathematicarum libre quinque (1656–1657), by the Dutch mathematician and commen-
tator Frans van Schooten, includes some ‘marked ruler’ constructions, and a reconstruction of some of
Apollonius’ work On Plane Loci. According to Whiteside (1961), it was through a study of the fourth book,
Organica conicarum sectionum, together with Elementa curvarum linearum by Schooten’s student Jan de
Witt32, that Newton learnt of the organic construction.

We have seen Newton’s brilliant use of the organic construction of a conic in his solution of the Pappus
problem, and indeed Whiteside notes that the organic construction can, in fact, be derived almost as a
corollary of Newton’s work on that problem. But Newton knew that these rotating rulers could do much
more: he thought of them as giving a transformation of the plane.

It was therefore natural for him to think of the construction in Lemma 21 as a transformation taking the
straight line (on which the directing legs intersect) to the conic (on which the describing legs intersect). This
is clear from his manuscript33 of about 1667:

And accordingly as the situation or nature of the line PQ varies from one place to another,
so will a correspondingly varying line DE be described. Precisely, if PQ is a straight line,
DE will be a conic passing through A and B; if PQ is a conic through A and B, then DE
will be either a straight line or a conic (also passing through A and B). If PQ is a conic
passing through A but not B and the legs of one rule lie in a straight line [. . . ], DE will be
a curve of the third degree [. . . ]34.

In fact Newton went much further than this, as is evident for example in his lovely construction35 of the
7-point cubic in the Enumeratio (1704). In this extract, note that “curves of second kind” are cubics, and
that the letters do not correspond to those in our figure 5.

All curves of second kind having a double point are determined from seven of their points
given, one of which is that double point, and can be described through these same points in
this way. In the curve to be described let there be given any seven points A,B,C,D,E, F,G,
of which A is the double point. Join the point A and any two other of the points, say B

and C, and rotate both the angle ĈAB of the triangle ABC round its vertex A and either

30See page 102 of (Guicciardini, 2009).
31See page 72 of (Guicciardini, 2009).
32This appeared in the second edition of Schooten’s translation of Descartes’ Géométrie (1659–1661).
33See pages 106 and 135 of volume 2 of (Newton, 1967–1981).
34In this context it is interesting to note that the general problem of constructing algebraic curves by linkages was solved in

(Kempe, 1876).
35See page 639 of volume 7 of (Newton, 1967–1981).
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Figure 5. The organic construction

one, ÂBC, of the remaining angles round its vertex, B. And when the meeting point C
of the legs AC,BC is successively applied to the four remaining points D,E, F,G, let the
meet of the remaining legs AB and BA fall at the four points P,Q,R, S. Through those
four points and the fifth one A describe a conic, and then so rotate the before-mentioned
angles ĈAB, ĈBA that the meet of the legs AB,BA traverses that conic, and the meet of
the remaining legs AC,BC will by the second Theorem describe the curve proposed.

Even in his earlier manuscript (1667), Newton studied various types of singular point, and indeed he
went so far as to devise a little pictorial representation of them. He also gave a long list of examples, up to
and including quintics and sextics. Finally, we note that just after the construction of the 7-point cubic he
considers the case in which the double point A is at infinity, as he often did elsewhere, thus in effect working
in the projective plane.

As noted by Shkolenok (1972), the transformations effected by the organic construction are in fact bira-
tional maps from the projective plane to itself, now known as Cremona transformations36. (We give a short
technical account of this in the Appendix.)

Of course one wonders how Newton could possibly have discovered such extraordinary results, so far ahead
of their time, and it seems clear at least (as Guicciardini argues) that Newton actually made a set of organic
rulers. For example, in the 1667 manuscript referred to above Newton uses terms such as manufactured,
steel nail, and threaded to take a nut. Guicciardini also draws our attention to Newton’s choice of language
in his letter (20th of August, 1672) to Collins explaining his constructing instrument:

And so I dispose them that they may turne freely about their poles A & B without varying
the angles they are thus set at37.

Finally, Guicciardini also notes that the drawing accompanying this letter is quite realistic. We return to
this point in the next section.

6. Cubics, and projective geometry

In the early seventeenth century very little was known about cubic curves. Newton revealed the potential
complexities of these curves, which, to quote Guicciardini38 “reinforced his conviction that Descartes’ criteria
of simplicity were foreign to geometry”. Newton’s first manuscript on the subject, Enumeratio Curvarum
Trium Dimensionum, thought to have been written around 1667, contained an equation for the general cubic

ay3 + bxy2 + cx2y + dx3 + ey2 + fxy + gx2 + hy + kx+ l = 0

36These were published by Luigi Cremona in Introduzione ad una teoria geometrica delle curve piane Tipi Gamberini e

Parmeggiani, Bologna, 1862.
37See page 94 of (Guicciardini, 2009)
38See page 112 of (Guicciardini, 2009).
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which he was able to reduce to four cases by clever choices of axes.

Axy2 +By = Cx3 +Dx2 + Ex+ F

xy = Ax3 +Bx2 + Cx+D

y2 = Ax3 +Bx2 + Cx+D

y = Ax3 +Bx2 + Cx+D

He then divided the curves into 72 species by examining the roots of the right-hand side. It is often
remarked that there are in fact 78 species, Newton failing to identify six of them. However, as Guicciardini
points out, Newton had in fact identified the remaining six, but had chosen to omit them from his paper
for some unknown reason39. Newton returned to his classification of cubic curves in the late 1670s with a
second paper40 Enumeratio Linearum Tertii Ordinis appearing as an appendix to his Opticks (1704).

The 1704 Enumeratio contained Newton’s astonishing discovery that every cubic can be generated by
centrally projecting one of the five divergent parabolas (encompassed by the equation y2 = Ax3 + Bx2 +
Cx+D), starting with the evocative phrase41

If onto an infinite plane lit by a point-source of light there should be projected the shadows
of figures . . .

This remained unproved until 1731, and was first demonstrated by François Nicole (1683–1758) and Alexis
Clairaut (1713–1765).

Figure 6. Projection of cubics

Here again, it seems extremely plausible that Newton’s intuition was supported by his use of an actual
projection from a point source of light, but Guicciardini notes that there have been differing views on this
question. Rouse Ball42 argued that the result was obtained using the projective transformations given in
the Principia, Book 1 Section V, Lemma 22. Thus, the discovery that all the cubics can be generated by
projecting the five divergent parabolas was essentially algebraic.

Talbot43 preferred the view that Newton might have followed a geometrical procedure. He argued that
Newton generated all the cubic curves by projection of the five divergent parabolas, using a method in which
he began by noting that the position of the horizon line determined the nature of the asymptotes of the
projected line.

39See note 8 on page 111 of (Guicciardini, 2009).
40See volume 2 of (Whiteside, 1964–1967).
41See page 635 in volume 7 of (Newton, 1967–1981).
42See sections 6.4.2 and 6.4.3 of (Guicciardini, 2009).
43C R M Talbot (1803–1890) published a translation of Newton’s 1704 Enumeratio in 1860, with notes and examples.
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There is no real evidence for either hypothesis in Newton’s work. Guicciardini and Whiteside both seem
to favour Talbot’s geometrical explanation. We agree: Newton may well have used Lemma 22 to test specific
cases, but the general result must surely have been perceived by him as a geometrical insight.

7. Physics

Some of the most extraordinary examples of Newton’s geometrical power arose in the exposition of his
physical discoveries. In this section we note, rather briefly, three such cases, starting with a question in
the foundations of the subject. Newton clearly and explicitly understood the Galilean relativity principle44,
and as was pointed out by Penrose (1987) Newton even considered45 adopting it as one of his fundamental
principles. But in what framework was this principle to operate? We agree with DiSalle, who argues46 that
Newton’s absolute space and time shares with special and general relativity that space-time is an objective
geometrical structure which expresses itself in the phenomena of motion.

Our second example comes from Section 6 of Book 1 of Principia, which is called To find motions in given
orbits. Lemma 28 is on algebraically integrable ovals:

No oval figure exists whose area, cut off by straight lines at will, can in general be found by
means of equations finite in the number of their terms and dimensions.

Newton’s proof simply takes a straight line rotating indefinitely about a pole inside the oval, and a point
moving along the line in such a way that its distance from the pole is directly proportional to the area swept
out by the line. This point describes a spiral, which intersects any fixed straight line infinitely many times.

Figure 7. Lemma 28

Then, noting almost as an aside what is essentially Bézout’s Theorem (1779) on the intersections of
algebraic curves, the proof is completed by the observation that the if spiral were given by a polynomial then
it would intersect any fixed straight line finitely many times.

At the end of his proof Newton applies the result to ellipses (which were of course the original motivation),
and defines “geometrically rational” curves, noting casually that spirals, quadratrices, and cycloids are
geometrically irrational. Thus he leapt to the modern demarcation of algebraic curves, while demonstrating
that a restriction to these curves (following Descartes) would not be enough for a description of orbital
motion.

This is how Arnol’d puts it47:

44See page 28 of (DiSalle, 2006).
45This is in De motu corporum in mediis regulariter cedentibus. See pages 188–194 in volume 6 of (Newton, 1967–1981).
46See page 16 of (DiSalle, 2006).
47See page 94 of (Arnol’d, 1990).
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Comparing today the texts of Newton with the comments of his successors, it is striking how
Newton’s original presentation is more modern, more understandable and richer in ideas
than the translation due to commentators of his geometrical ideas into the formal language
of the calculus of Leibnitz.

Unfortunately, Newton did not make explicit what he meant by an oval, which has led to considerable
controversy48. Although in later editions of the Principia Newton inserted a note excluding ovals “touched
by conjugate figures extending out to infinity”, he never made clear his assumptions on the smoothness of
the oval. Nor did the statement of the Lemma distinguish between local and global integrability. There
is therefore a family of possible interpretations of Newton’s work, which has been elegantly dissected in
(Pourciau, 2001), who concludes that:

. . . Newton’s argument for the algebraic nonintegrability of ovals in Lemma 28 embodies
the spirit of Poincaré: a concern for existence or nonexistence over calculation, for global
properties over local, for topological and geometric insights over formulaic manipulation . . .

Our final example comes from Section 12 of Book 1, which has the title The attractive forces of spherical
bodies. Here Newton shows that the inverse square law of gravitation is not an approximation when the
attracting body is a sphere instead of a point, and one of the key results is Proposition 71:

a corpuscle placed outside the spherical surface is attracted to the centre of the sphere by a
force inversely proportional to the square of its distance from that same centre.

Figure 8. Gravitational attraction of a spherical shell

Newton’s proof is utterly geometrical, and utterly beautiful49. Here is a sketch of the argument. The
spherical surface attracts “corpuscles” at P and p, and we wish to find the ratio of the two attractive forces.
Draw lines PHK and phk such that HK = hk, and draw infinitesimally close lines PIL and pil with
IL = il. (These are not shown in our figure.) Rotate the segments HI and hi about the line Pp to obtain
two ring-shaped slices of the sphere. Compare the attractions of these slices at P and p respectively, merely
using the many similar triangles in the construction, and obtain the result.

Littlewood (1948) felt that the proof’s key geometrical construction (of the lines PHK and phk cutting off
equal chords HK and hk) “must have left its readers in helpless wonder”, but conjectured that Newton had
first proved the result using calculus, only later to give his geometrical proof. We agree with (Chandrasekhar,
1995) that this is highly implausible. As Chandrasekhar says, “his physical and geometrical insights were
so penetrating that the proofs emerged whole in his mind”50. We would argue, further, that the integration
Newton is supposed to have performed would in no way have suggested the key geometrical construction.
In other words, there is absolutely no link between the supposed analysis and the synthesis.

48Whiteside’s own counter-example (which he gave in note 121 on pages 302–303 in volume 6 of (Newton, 1967–1981)) was

elegantly ruled out in (Pesic, 2001).
49It certainly meets Whitehead’s criterion of style! See page 19 of A N Whitehead, The Aims of Education and Other

Essays, New York: Macmillan, 1929
50Compare Penrose’s discussion of this feature of inspirational thought, and his remarks on Mozart’s similar ability to seize

an entire composition in his mind, on page 423 of (Penrose, 1989).
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8. Concluding remarks

In focussing on Newton’s geometry we do not mean to imply that he was not also a brilliant algebraist,
of which there is ample evidence in the Principia, and as we noted in our introduction he is of course widely
known for his calculus.

However, it is unfortunate, to say the least, that Newton claimed that he had first found the results in
the Principia by using the calculus, a claim for which there is no evidence at all51.

On the contrary, many scholars have given clear and convincing arguments that Newton’s claim is simply
false. Guicciardini (2009) rehearses these, as do Cohen (1995) and Needham (1993), for example. The claim
was made during the row with Leibnitz over priority, and simply does not make sense.

Of course the calculus was another profound achievement of Newton’s, but just because the calculus came
to dominate mathematics it should not be assumed that Newton must always have used it in this way. Why
ever should he?

Newton was one of the most gifted geometers mathematics has ever seen, and this allowed him to see
further, much further, than others, and to express this extraordinary insight with precision and certainty.
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Appendix: Cremona transformations

In (Newton, 1687) Book 1 Section 5 Lemma 21 it is shown that the organic transformation maps a line
to a conic through the poles B and C, and conversely that any conic through the three points B, C, and A
will be mapped to a line.

The crucial part of this is that the conic goes through the point A (as well as the two poles B and C). This
point A is special: it is the third of the three points which are needed for the Cremona transformations52.

Note also that it is clear from this Lemma that the organic transformation is generically one-one and
self-inverse. It can be shown by a short analytical argument that organic transformations are rational maps
53. But a rational map is birational if and only if it is generically one-to-one54. So the organic transformation
is a birational map from P2 to itself, and hence a Cremona transformation.

Without loss of generality we can take the points A, B, and C to have homogeneous coordinates (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Conics in P2 through these three points have the form

axy + byz + czx = 0.

Consider the standard quadratic transformation φ : P2 → P2

φ(x, y, z) = (yz, zx, xy),

which is a special case of a Cremona transformation. Let L be a line in the codomain. Then L is

axy + byz + czx = 0,

which is a conic through (1, 0, 0), (0, 1, 0), and (0, 0, 1) in the domain. So the space of lines in the codomain
is the same as this linear system of conics in the domain, and φ−1(L) is one of these conics.

In fact, the organic transformation is this standard quadratic transformation. To see this we use Hartshorne’s
argument55, as follows.

Let S be the subsheaf of O(2) consisting of those elements which vanish at the three base points, and let

s0, s1, s2 ∈ Γ(P2,S)

be global sections which generate S. In other words s0, s1, and s2 are three conics which generate the linear
system of conics through the three base points. Also, let

x0, x1, x2 ∈ Γ(P2,O(1))

be global sections which generate O(1). Then x0, x1, and x2 are simply lines generating the linear system of
lines in P2.

Note that we are thinking of the conics as being in the domain P2, and the lines as being in the codomain
P2, as in the diagram below:

52Newton only refers to the third base point A in the converse. In fact it is easy to see that if CA,BC, and AB intersect
the line in Q,R, and S respectively, then the organic transformation maps Q to B, R to A, and S to C.

53We would prefer a synthetic argument for this, but have not yet found one.
54See page 493 of (Griffiths and Harris, 1978), for example.
55See page 150 of (Hartshorne, 1977).
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S O(1)
↓ ↓
P2 φ→ P2

Then there is a unique rational map
φ : P2 → P2

such that
S = φ∗(O(1)),

with si = φ∗(xi). In other words there is a unique rational map from P2 to itself with the property that for
any line L in the codomain, φ−1(L) is a conic in the domain through the three base points. So the organic
transformation is the same as the standard quadratic transformation.
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